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Barcelona, Spain

Edited by David A. Weitz, Harvard University, Cambridge, MA, and approved October 23, 2017 (received for review July 14, 2017)

Mixed-order phase transitions display a discontinuity in the order
parameter like first-order transitions yet feature critical behav-
ior like second-order transitions. Such transitions have been pre-
dicted for a broad range of equilibrium and nonequilibrium sys-
tems, but their experimental observation has remained elusive.
Here, we analytically predict and experimentally realize a mixed-
order equilibrium phase transition. Specifically, a discontinuous
solid–solid transition in a 2D crystal of paramagnetic colloidal par-
ticles is induced by a magnetic field H. At the transition field
Hs, the energy landscape of the system becomes completely flat,
which causes diverging fluctuations and correlation length ξ ∝
|H2 − H2

s |−1/2. Mean-field critical exponents are predicted, since
the upper critical dimension of the transition is du = 2. Our col-
loidal system provides an experimental test bed to probe the
unconventional properties of mixed-order phase transitions.
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Paul Ehrenfest put forward the first generic classification of
phase transitions in 1933 (1). Nowadays,phase transitions

are usually classified into first-order transitions, which feature a
discontinuity in the order parameter and finite fluctuations, and
second-order transitions, in which the order parameter changes
continuously and the correlation length diverges. However, some
transitions do not accommodate to this dichotomous classifica-
tion. In fact, a number of models have been shown to exhibit phase
transitions that combine features of first- and second-order tran-
sitions. Particularly, transitions that are discontinuous but have
a diverging correlation length have been termed “mixed-order”
or “hybrid” phase transitions. Such transitions have been pre-
dicted for equilibrium systems with long-range interactions, for
example in models of spin chains (2–8), DNA denaturation (5,
6), and wetting (9–11), as well as for nonequilibrium phenom-
ena such as jamming (12–14), percolation (14–16), cooperative
dynamics in networks (16–19), and turbulence (20). In most cases,
these transitions exhibit nonstandard critical behavior, featuring
essential singularities or algebraic divergencies with parameter-
dependent critical exponents. Whether mixed-order transitions
can take place in equilibrium systems with short-range interac-
tions and whether they can exhibit standard critical behavior was
unclear. Moreover, the experimental observation of mixed-order
phase transitions has remained elusive.

Here, we find a mixed-order phase transition in a 2D colloidal
crystal. We analytically predict the discontinuous character of the
transition and the divergence of the correlation length from a
model with nearest-neighbor interactions. In addition, we pre-
dict that our transition features mean-field critical exponents.
Thus, we show that equilibrium systems with short-range inter-
actions can undergo mixed-order transitions, and that they can
exhibit mean-field critical behavior in low dimensionality. More-
over, we experimentally observe the transition, thus providing
an experimental realization of an equilibrium mixed-order phase
transition.

Results
The colloidal crystal is assembled from a suspension of param-
agnetic colloidal particles of radius a = 0.5 µm and volume mag-
netic susceptibility χ≈ 1. The suspension is deposited on a sub-

strate featuring a periodic pattern of magnetic domains in the
form of parallel stripes of width λ/2 = 1.3 µm, with consecu-
tive domains having opposite magnetization. The particles then
arrange along parallel lines above the domain walls, where the
substrate generates a magnetic field±Hsŷ that magnetizes parti-
cles in consecutive lines in opposite directions (Fig. 1A). Then,
dipolar interactions between the particles yield a crystalline
ordering characterized by the lattice angle α defined in Fig. 1B.

Upon the application of a uniform in-plane magnetic field H ŷ ,
particles on consecutive lines acquire magnetic dipoles mi ∝H +
Hs and mj ∝H − Hs (Fig. 1A). Thus, their interaction yields
a contribution Uij ∝mimj ∝H 2

s − H 2 to the energy. In turn,
the interactions between particles in the same line yield a con-
stant contribution to the energy, independent of the lattice order
parameter α. Then, cutting off the dipolar interactions to nearest
neighbors, the total interaction energy per particle in a uniform
crystal reads (21)

u = ulines + uα =

ū

(
1 +

H 2

H 2
s

)(
λ/2

d

)3

+ ū

(
1− H 2

H 2
s

)
f (α, d/λ) . [1]

Here d is the mean distance between neighbor particles in the
same line (Fig. 1B), and ū = 32πµa6χ2H 2

s /(9λ
3), with µ ≈ 4π×

10−7 H/m the magnetic permeability of the medium. The shape
of f (α, d/λ) can be seen in the energy lanscape (Fig. 1E), which
is periodic in α, reflecting the crystal periodicity (Fig. 1B).

For H <Hs the external field H weakens half of the mag-
netic dipoles and strengthens the other half (Fig. 1B), which
lowers the angle-dependent energy contribution uα. At H =Hs
half of the dipoles are exactly canceled (Fig. 1C), and uα van-
ishes. For H >Hs all of the dipoles point in the same direction
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Fig. 1. The landscape-inversion phase transition is discontinuous. (A) Sketch of the system (side view). Paramagnetic particles assemble in lines above the
walls between oppositely magnetized domains (white and gray) of the substrate. The particles acquire dipolar moments m ∝ H±Hs due to the super-
position of the external and the substrate magnetic fields. (B–D) Sketch of the system (top view), at values of the external magnetic field H lower,
equal, or higher than the substrate field Hs, respectively. The crystalline order is described by the lattice angle α. (E) The energy landscape of the sys-
tem, Eq. 1, completely inverts at H = Hs, thus inducing a transition between the αa and αb crystalline structures. Dashed lines illustrate the periodicity
of the potential, with the identification αa↔−αa, since these angles correspond to the same structure (see B). The energy scale is u0≡µ0χ

2a3H2
s , and

f (α, d/λ)= cos3α (3 cos2α− 1) + cos3θ (cos2θ− 1), with θ= arctan(2d/λ−
√

sec2α− 1). A constant term H2/H2
s is added to shift the curves for bet-

ter visualization. (F) Discontinuous transition between the αa and αb structures upon increasing the external magnetic field H. Points are experimental
data and lines indicate the theoretical expectation. The transition field Hs = 1.43 ± 0.04 kA/m is identified from the midpoint of the order parameter,
α (Hs) = (αa +αb) /2.

(Fig. 1D), and uα changes sign. Therefore, the application of an
external field H > Hs causes the energy lanscape to globally
invert (Fig. 1E). This induces the so-called landscape-inversion
phase transition (LIPT) (21, 22), whereby the crystal experiences
a structural transition from the αa to the αb structure concomi-
tant with a transition from a ferri- to a ferromagnetic ordering of
the induced dipoles (Fig. 1 B–F).

The energy landscape in Eq. 1 and Fig. 1E predicts that the
equilibrium state is αa for any field H <Hs and αb for any field
H >Hs. Therefore, the order parameter experiences a disconti-
nuity at H =Hs, as shown in Fig. 1F. The data confirm this pre-
diction within the experimental accuracy.

Next, we allow for a spatially dependent, coarse-grained order
parameter field α (~r) by means of a Ginzburg–Landau effective
Hamiltonian (23):

H = ρ

∫
S

[
u (α) +

κ

2

(
~∇α
)2]

d2~r . [2]

Here, ρ= 2/ (λd) is the surface density of particles, and κ is
the spatial coupling coefficient that provides the scale for the
energy cost of order-parameter gradients (24). Then, we expand
the effective Hamiltonian up to second order in the fluctuations
δα (~r) =α (~r)−α∗ around the equilibrium value α∗ of the order
parameter. In terms of the Fourier components of the fluctuation
field, it reads

H ≈ N

2

∑
~q

[
ū

(
1− H 2

H 2
s

)
∂2f

∂α2

∣∣∣∣
α∗

+ κq2

]
|δα̃~q |2. [3]

Here, N = ρS is the total number of particles, and irrelevant con-
stant terms have been omitted. The structure factor computed
from Eq. 3, namely within the Gaussian approximation for the
fluctuations, takes the Ornstein–Zernike form

S (q) =
〈
|δα̃~q |2

〉
=

R−2

q2 + ξ−2
, [4]

with a Debye screening length R =
√

Nκ/(2kBT ) and a corre-
lation length

ξ =

[
κ

ū (1−H 2/H 2
s ) ∂2

αf |α∗

]1/2
. [5]

This result shows that the correlation length diverges at the tran-
sition point H = Hs as ξ ∝ |H 2 − H 2

s |−1/2. The structure factor
also diverges at long wavelengths with the mean-field exponent
η = 0, defined as S (q ,Hs) ∝ qη−2. Therefore, despite being
discontinuous, the LIPT features critical behavior, and hence
it has a mixed-order character. Weakly first-order phase tran-
sitions, characterized by a small jump of the order parameter,
can also show apparent signs of criticality. As ordinary first-order
transitions, these transitions result from odd terms in the Landau
expansion of the free energy, and hence they exhibit hysteresis.
In contrast, the LIPT does not exhibit hysteresis (Fig. 1F), and it
features genuine critical behavior.

The critical behavior of the LIPT is due to the prefactor 1 −
H 2/H 2

s in the uα term of the energy, Eq. 1. This prefactor causes
the energy landscape to become completely flat at the transition
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point (Fig. 1E), which results in the diverging fluctuations and
correlation length. In contrast, the Landau free energy for
second-order transitions becomes only locally flat at the criti-
cal point. In Ginzburg–Landau theory, the Ginzburg criterion
identifies the so-called upper critical dimension du below which
fluctuations are relevant and mean-field scaling fails (23). Conse-
quently, critical exponents depart from their mean-field values in
systems of dimensionality d < du. Whereas du = 4 for Ising-like
transitions, application of the Ginzburg criterion to our energy
landscape shows that the upper critical dimension of the LIPT
is du = 2 (Supporting Information). Hence, mean-field critical
exponents are expected in our 2D system.

To test our predictions, we experimentally measured the struc-
ture factor at different values of the external field H . Fig. 2 A
shows the expected divergence of the structure factor at long
wavelengths close to the transition point. By fitting Eq. 4 to the
experimental data, we extract the correlation length at different
magnetic fields, which is shown to diverge at the transition point
in Fig. 2B. The data feature a tendency similar to the predicted
mean-field scaling, Eq. 5. However, the critical exponent cannot
be reliably measured in our setup, since thermal fluctuations and
the presence of defects limit the size of the crystals.

We also measured the amplitude of the order-parameter fluc-
tuations, which also diverges at the transition point, as shown in
Fig. 2C. In this case, the theoretical prediction is〈

δα2〉 =
∑
~q

〈
|δα̃~q |2

〉
≈ R−2

(2π)2

∫ 2π

0

dθ

∫ π/b

π/L

q dq

q2 + ξ−2

=
R−2

4π
ln

(
1 + (πξ/b)2

1 + (πξ/L)2

)
, [6]

where b∼ d is a microscopic cutoff, and L∼
√
S =
√
N ρ is the

system size. Then, the divergence of the correlation length entails
the logarithmic divergence of the fluctuations in Eq. 6, as indi-
cated in Fig. 2C. Therefore, like in a conventional critical point,
both the fluctuations and the correlation length diverge.

Conclusions
To conclude, we have shown that a 2D colloidal crystal features
a mixed-order transition, as we predicted from a model with
nearest-neighbor interactions. Despite experiencing a discontin-
uous jump, the order parameter displays unbounded fluctuations
and a diverging correlation length at the transition point. The
divergence stems from the flattening of the energy landscape
at the transition point, which is due to the landscape-inversion
mechanism of the transition (LIPT) (21, 22). In addition, our
transition features an upper critical dimension equal to the sys-
tem dimensionality, implying mean-field critical exponents. This
result calls for further theoretical and experimental investiga-
tions, including assessing the universality of the critical behavior
in other systems exhibiting the LIPT scenario (25).

In all, our findings prove that mixed-order phase transitions
can take place in an equilibrium system with short-range interac-
tions, exhibiting mean-field critical exponents in two dimensions.
Hence, we establish a paradigmatic example of such transitions.
Moreover, we provide a colloidal model system (26) to experi-
mentally explore the properties of mixed-order phase transitions,
in particular with regard to their dynamics (22).

Materials and Methods
The magnetic substrate is a ferrite garnet film (FGF) grown by dipping
liquid-phase epitaxy on a 0.5-mm-thick gadolinium–gallium garnet sub-
strate (27). The FGF was coated with a 1.5-µm-thick layer of a positive Pho-
toresist AZ-1512 (Microchem) by spin coating (Spinner Ws-650Sz; Laurell)
and UV irradiation (Mask Aligner MJB4; SUSS Microtec).

A monodisperse (coefficient of variation ∼ 3%) suspension of spheri-
cal paramagnetic colloidal particles (Dynabeads MyOne; Dynal) was diluted
in highly deionized water (Milli-Q; Millipore) and then deposited on top

A

B

C

Fig. 2. The landscape-inversion phase transition features critical behav-
ior. (A) The structure factor presents a long-wavelength divergence close
to the transition point. Points are experimental data and lines are fits of
the Ornstein–Zernike form in Eq. 4. (B) The correlation length of the order-
parameter fluctuations, extracted from the fits of Eq. 4 to the structure fac-
tor, diverges at the transition point. Lines show the predicted scaling, with
a fit of the prefactor. (C) The amplitude of the order-parameter fluctuations
also diverges at the transition point. Note that angle fluctuations become
of the order of the maximum lattice angle αa (Fig. 1) close to the critical
point. Lines are fits to the prediction, Eq. 6 with Eq. 5, with three fitting
parameters: κ, b, N.

of the substrate. The particles sediment by density mismatch and form a
monolayer above the substrate due to the balance between the magnetic

12908 | www.pnas.org/cgi/doi/10.1073/pnas.1712584114 Alert et al.
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attraction with the Bloch walls of the FGF and electrostatic repulsion with
the polymer coating. After 15 min of sedimentation and equilibration
the system was subjected to a static in-plane magnetic field generated
by custom-made Helmholtz coils with the axis parallel to the substrate
plane and perpendicular to the Bloch walls. The coils are connected to
a dc power supply (TTi-EL302Tv), and they generate a constant and uni-
form magnetic field over the sample region (∼0.5 cm2) for the duration
of the experiment, as we checked with a teslameter. After 5 min of fur-
ther equilibration, 15-min-long videos are recorded at 75 Hz over an area
of 140× 105 µm2 by an upright optical microscope (Eclipse Ni; Nikon) with
a 100×, 1.3 N.A. objective and a 0.45TV lens connected to a CCD camera
(Basler scout scA640-74fc; Basler). The good agreement between the pre-
dicted and the experimental crystalline structures shows that thermal equi-
librium is reached in the samples. Further verification is detailed in previous
work (21, 22).

Upon filtering the videos to optimize brightness and contrast, particle
positions are tracked by a custom-made MATLAB program based on the
Crocker and Grier image processing code (28). From particle positions, a
lattice angle αi is assigned to each particle according to its definition in

Fig. 1B, so that an order parameter field α
(
~r, t
)

is obtained. From it, the
equilibrium order parameter is computed as α= 〈〈α

(
~r, t
)
〉~r〉t , where the

external average runs over 30 snapshots of the system obtained every 30 s.
Then, the correlation function

C
(
~r
)
=

〈〈
δα
(
~r ′
)
δα
(
~r ′ +~r

)〉
~r ′

〉
t
−
〈〈
δα
(
~r ′
)〉

~r ′

〉2

t〈〈
δα2

(
~r ′
)〉

~r ′

〉
t
−
〈〈
δα
(
~r ′
)〉

~r ′

〉2

t

[7]

is computed from the order-parameter fluctuations field δα
(
~r
)
= α

(
~r
)
−〈

α
(
~r ′
)〉

~r ′ . Finally, the structure factor is obtained as

S (q) =

∫
S

C
(
~r
)

e−i~q·~r d2~r. [8]
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